This is an old revision of the document!
Separate Into Classes : Separates stacks of particle images into stacks for each class and evaluates results.
Usage in command line (beta version):
sp_eval_isac.py input_class_avgs output_directory --particles=input_image_stack --align_isac_dir=isac_or_beautifier_dir --filtrad=filter_radius --apix=pixel_size --shrink=shrink_factor --ctf=ctf_mode --nvec=number_of_eigenimages --pca_radius=radius --chains_radius=radius --chains_exe=spchains_executable --applyparams=centering_mode --write_centered --debug --imgformat=image_format --verbosity=verbosity_level
The purpose of sp_separate_class.py is to:
: write particle-membership lists for each class : write separate stacks for each class, : optionally low-pass filter and/or downsample the images, and : optionally compute eigenimages (basis images) for each class
1. Standard usage: create separate stacks for each class:
sp_eval_isac.py input_class_avgs output_directory
2. Apply a low-pass filter to the image stacks:
sp_eval_isac.py input_class_avgs output_directory --particles=input_image_stack --filt=filter_radius --apix=pixel_size
Filter radius is in units of Angstroms. If –apix is not specified, program will assume units of pixels^-1.
3. Downsample output image stack:
sp_eval_isac.py input_class_avgs output_directory --particles=input_image_stack --shrink=shrink_factor
4. Apply ISAC alignments to particles:
sp_eval_isac.py input_class_avgs output_directory --particles=input_image_stack --align_isac_dir=isac_or_beautifier_directory
Alignments used by ISAC or beautification will be applied to the particles. In addition, the average and variance for each map will be written.
5. Compute eigenimages (basis images) for each class:
sp_eval_isac.py input_class_avgs output_directory --particles=input_image_stack --align_isac_dir=isac_directory --nvec=number_of_eigenimages --pca_radius=radius
In addition to the average and variance, the requested number of eigenimages will be computed also. If –pca_radius is not provided, the whole image will be used to compute the eigenimages.
6. Apply centering to each class as determined by sp_center_2d3d.py:
sp_eval_isac.py input_class_avgs output_directory --particles=input_image_stack --align_isac_dir=isac_directory --write_centered --applyparams=centering_mode
If you ran sp_center_2d3d.py, you can also apply those centering parameters to the individual particles. The –write_centered flag will write out the particles; omitting the flag will simply write out the alignment parameters without applying them. The options for –applyparams are 'intshifts' for integer shifts and no rotation (i.e., no interpolation) and 'combined' (rotation and shifts).
7. Apply a Gaussian band-pass filter to an image stack (e.g., class averages):
sp_eval_isac.py input_class_avgs output_directory --particles=input_image_stack --align_isac_dir=isac_directory --write_centered --applyparams=centering_mode
The default beautifier settings (CTF-correction using a Wiener filter and power-spectrum adjustment) will amplify the low-resolution data, and may make the averages more difficult to interpret. A band-pass filter will dampen the lowest-resolution data, and also the high-resolution noise. This filtration may be helpful for recognizing smaller complexes.
: Should allow filter types other than Gaussian low-pass
Tapu Shaikh
Category 1:: APPLICATIONS
sphire/bin/sp_eval_isac.py
Beta:: Under evaluation and testing. Please let us know if there are any bugs.
There are no known bugs so far.