sp_cryolo_train
crYOLO - training: Training of crYOLO, a deep learning high accuracy particle picking procedure.
Usage
Usage in command line
sp_cryolo_train.py particle_diameter training_dir annot_dir --cryolo_train_path=CRYOLO_PATH --architecture=architecture --input_size=input_size --num_patches=num_patches --overlap_patches=overlap_patches --train_times=train_times --pretrained_weights_name=PRETRAINED_NAME --saved_weights_name=SAVE_WEIGHTS_NAME --batch_size=batch_size --learning_rate=learning_rate --np_epoch=np_epoch --object_scale=object_scale --no_object_scale=no_object_scale --coord_scale=coord_scale --valid_image_dir=valid_image_dir --valid_annot_dir=valid_annot_dir --warmup=warmup --gpu=gpu --fine_tune --gpu_fraction=GPU_FRACTION --num_cpu=NUM_CPU
Typical usage
To train crYOLO for a specific dataset, one have to specify the path to training data in the config file.
Then the training typcial happens in two steps:
1. Warmup:
sp_cryolo_train.py particle_diameter training_dir annot_dir --architecture="YOLO" --warmup=5
2. Actual training:
sp_cryolo_train.py --conf=config_path --warmup=0 --gpu=0
Main Parameters
- --cryolo_train_path
- crYOLO train executeable
- Path to the crYOLO executeable (default none)
- particle_diameter
- Particle diameter [Pixel]
- Particle diameter in pixel. This size will be used for as box size for picking. Should be as small as possible. (default required int)
- training_dir
- Training image directory
- Folder which contain all images. (default required string)
- annot_dir
- Annotation directory
- Box or star files used for training. The should have the same name as the images. (default required string)
Advanced Parameters
- --architecture
- Network architecture: Type of network that is trained. (default PhosaurusNet)
- --input_size
- Input image dimension [Pixel]
- Dimension of the image used as input to network. (default 1024)
- --num_patches
- Number of patches
- The number of patches (e.g 2×2) the image is divided and classified separately. (default 1)
- --overlap_patches: Patch overlap [Pixel]: The amount of overlap the patches will overlap (default 0)
- --train_times
- Repeat images
- How often a images is augmented and repeadet in one epoch. (default 10)
- --pretrained_weights_name: Pretrained weights name
- Name of the pretrained model (default cryolo_model.h5)
- --saved_weights_name: Saved weights name
- Name of the model to save (default cryolo_model.h5)
- --batch_size
- Batch size
- How many patches are processed in parallel. (default 5)
- --fine_tune
- Fine tune mode
- Set it to true if you only want to use the fine tune mode. (default False)
- --learning_rate
- Learning rate
- Learning rate used during training. (default 0.0001)
- --np_epoch
- Number of epochs
- Maximum number of epochs. (default 100)
- --object_scale
- Object loss scale
- Loss scale for object. (default 5.0)
- --no_object_scale: Background loss scale: Loss scale for background. (default 1.0)
- --coord_scale: Coordinates loss scale: Loss scale for coordinates. (default 1.0)
- --valid_image_dir
- Path to validation images
- Images used (default none)
- --valid_annot_dir
- Path to validation annotations
- Path to the validation box files (default none)
- --warmup
- Warm up epochs
- Number of warmup epochs. (default 5)
- --gpu: GPUs
- List of GPUs to use. (default 0)
- --gpu_fraction: GPU memory fraction
- Specify the fraction of memory per GPU used by crYOLO during training. Only values between 0.0 and 1.0 are allowed. (default 1.0)
- --num_cpu: Number of CPUs
- Number of CPUs used during training. By default it will use half of the available CPUs. (default -1)
Output
It will write a .h5 file (default yolo_model.h5) into your project directory.
Description
The training is divided into two parts. 1. Warmup: It prepares the network with a few epochs of training without actually estimating the size of the particle.
2. Actual training: The training will stop when the loss on the validation data stops to improve.
Method
Time and Memory
Training needs a GPU with ~8GB memory. Training on 20 micrographs typicall needs ~20 minutes.
Developer Notes
2019/09/19 Thorsten Wagner
Reference
Author / Maintainer
Keywords
Category 1:: APPLICATIONS
Files
sparx/bin/sp_cryolo_train.py
See also
Maturity
Bugs